
Int. J. Multiphase Flow Vol. 16, No. 1, pp. 69-77, 1990 0301-9322/90 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1990 Pergamon Press/Elsevier 

T R A N S I E N T  T W O - P H A S E  F L O W  I N  L O W  V E L O C I T Y  

H I L L Y  T E R R A I N  P I P E L I N E S  

Y. TAITEL 
Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, Tel-Aviv University, 

Ramat-Aviv 69978, Israel 

O.  SHOHAM a n d  J. P. BRILL 

Department of Petroleum Engineering, University of Tulsa, 600 S. College Ave, 
Tulsa, OK 74104, U.S.A. 

(Received 15 September 1988; in revised form 17 July 1989) 

Abstract--For a hilly terrain pipeline operating at low flow rates of liquid and gas, the liquid tends to 
accumulate in the valleys while the gas tends to accumulate in the peaks. Under such conditions frictional 
pressure losses can be neglected and the system is totally gravity controlled. Liquid and gas is supplied 
at the entrance and is collected at the exit. The system can exhibit a complex transient behavior of the 
gas and the liquid in the pipe, even though the input flow rates of the liquid and gas are constant. The 
transient behavior eventually results in either a stable steady-state flow, with two-phase bubble or slug 
flow in the upward sections and stratified flow in the downwards sections, or complex indefinite 
fluctuations in pressure and fluids distributions when the liquid in the upward sections is unstable. In this 
work we propose a model and present the equations for predicting the behavior of such a system. Example 
solutions are provided for both the stable and the unstable cases. 
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INTRODUCTION 

For low flow rates of liquid and gas in pipelines the process is gravity dominated. Figure 1 shows 
a typical piping system over hilly terrain with downward inclined sections ("downcomers") 
followed by sections with upward inclinations ("risers"). For such a system, the liquid tends to 
accumulate at the bottom of each section and the gas accumulates in the peaks. Under these 
conditions, the pressure drop is totally governed by gravity, namely the hydrostatic pressure, 
and so are the liquid and gas distributions in the pipe. Although the case of a perfectly horizontal 
section is excluded, this is not a severe restriction since in practice pipelines are seldom perfectly 
horizontal. 

In spite of this apparently easy to handle case, the solution for the pressure and the fluids 
distributions as a function of time is not trivial. In particular, one must consider the possible 
unstable condition that may develop in the risers as a result of the compressibility of the gas which 
has accumulated in the upstream peaks. 

Only simple systems of this geometry have been analyzed in the past. In particular, the severe 
slugging phenomenon, restricted to one line, one riser and a separator of constant pressure was 
treated (Schmidt et al. 1980; Taitel 1986). More complex systems were analyzed using an elaborate 
numerical code, which was also claimed to simulate severe slugging (Bendiksen et al. 1986). 

In this work we present a model for treating a general pipe system for low flow rates of gas and 
liquid. The model is based on a quasi-equilibrium approach that has been used by Schmidt et al. 

(1980) and has been shown to apply for a single pipeline-riser system. In this work this theory was 
extended to include multiple upward and downward inclinations in a way that can also handle the 
unstable behavior. 

This model can be used as a basis for practical computer simulations of actual systems. It can 
also serve as a basis to check the accuracy of any elaborate numerical schemes when simulating 
low flow rates operations. Since the model introduced here is based on very few assumptions 
(related primarily only to the unstable behavior), it is expected to simulate the behavior of real 
systems with considerable confidence. 
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ANALYSIS 

The pipe system considered is one that follows terrain consisting of sections of upward 
inclination and sections with downward slopes, as shown in figure 1. The liquid and gas enter the 
pipe system with a known mass flow rate of liquid, mL~, and gas, incl. The pipe system ends with 
a separator that is maintained at a known pressure. 

The analysis presented is valid for low velocities of liquid and gas. Frictional pressure losses can 
then be neglected and the liquid tends to accumulate in the valleys. We consider first the "normal" 
case (case 1) where the liquid accumulates in the lower sections of the pipe and the gas takes its 
place above the liquid, as shown in figure 1. 

The upward sections of the pipe (the risers) are of lengths s~, s2 . . . . .  s, and are inclined with 
angles of inclination V~, V2 . . . .  ,? ,  to the horizontal. The downward inclined sections are 
l~,/2 . . . . .  I, long and have angles of inclination ill, f12 . . . . .  fl~. The liquid distribution in the pipe 
is given in terms of the values xi and zi. The liquid mass at any valley is mLi, whereas the mass 
of the gas is designated as rnGi (see figure 1 for details). Since for low flow rates the system is under 
hydrostatic equilibrium, the values of xj and zi, as well as the pressure pi, can be calculated for 
given masses of liquid and gas in the pipe (rnLi and mGi). 

A gas mass balance should satisfy 

P' [ ( l , -  x i )A  + (si_, - z,_ ,)A] =mG,. [11 
RT 

In this equation p i / R T  is the gas density assuming ideal gas behavior (R is the ideal gas constant 
and T the absolute temperature). The term in square brackets is the volume occupied by the gas. 

The liquid mass balance is simply 

pL (Xi + 2 i )A  : mLi ,  [21 

where the liquid density PL is assumed constant. 
In [1] and [2] mei and mGi are constant for i > 1. me~ and mGl, however, increases with time owing 

to the input flow rate of the liquid and gas that accumulate at the first section. This accumulation 
leads to the unsteady behavior. 

Hydrostatic pressure is satisfied by the following relation: 

Pi = Pi+ 1 + Peg(Zi sin Vi - xi sin fli). [3] 

Equations [1]-[3] consist of three equations for the three variables xi, zi and pi. The solution, 
however, is not quite straightforward since the equations include the variables pi+~ and zi_ i. The 
solution is obtained by solving the resulting n equations simultaneously. Unfortunately, the 
equations are nonlinear and cannot be solved by a simple matrix inversion. 

The solution was obtained using the following iterative procedure. The system of equations [2] 
and [3] were solved for xi and zi using initial assumed pressure pi. The pi values were then calculated 
using [1] and the values compared with the assumed values. The iteration is continued until 
successive values of all the pi values are within the desired degree of accuracy. To accelerate and 
insure convergence, the values of xi, zi and pi at the k + lth iteration were taken as the means of 
the "old" values in the ks iteration and the new values calculated with [1]-[3]. One may attempt 
to use [1] and [2] to solve explicitly for xi and zi and use [3] to calculate pi. This scheme, however, 
is highly unstable and cannot be used. 

Figure I. Pipe system---case 1. 
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The equations are solved for any time provided the mass of liquid in the valleys and the gas in 
the peaks is known. With time, however, these quantities may change. For the "normal" case 
described in figure l, only the mass of the liquid and the gas in the first section increases with time, 
due to the liquid and gas input flow rates roLl and m ~ .  However, the mass of liquid and gas in 
all other sections (i > l) remains constant. 

As liquid and gas accumulate in the first section of the pipe, one of two events may happen. For 
a relatively low flow rate of gas, the liquid interface in the upward section will reach the top of 
the pipe z~ = si first. For a relatively high flow rate of gas and low flow rate of liquid, the liquid 
interface in the downward section will reach the bottom of the pipe (xg = 0) before the liquid 
interface (zi) reaches the top of the riser. The former is probably the more common mode of 
operation and will be considered first. In this case (case 2), some of the liquid from section i will 
be supplied to section i + 1 so that the liquid mass in section i + 1 will now increase. One may 
also consider that the liquid in section i + 1 will also reach the top of the riser so that section i 
will be supplying liquid to section i + 1 and section i + 1 will be supplying liquid to section i + 2 
etc. 

Figure 2 describes this typical case for section i. Equations [1]-[3] are also valid for this case, 
with the exception that zi is no longer an unknown since z~ = s~ and is now a constant. On the other 
hand, the mass of the liquid in this section is no longer a known quantity and [2] is now used to 
calculate the liquid mass in this section. Note also, that in this case the liquid mass in section i + 1 
is no longer a constant since the liquid supplied from section i to the next section i + 1 should be 
taken into account. 

Next we consider case 3 (see figure 3), where the liquid level in the downward inclined pipe 
reaches the bottom of the pipe before the liquid interface in the riser reaches to top of the pipe. 
In this case a two-phase steady-state flow will result. The development of the steady state can be 
subdivided into two steps. The first step is when the gas penetrates the liquid riser. The second step 
starts when the void fraction in the riser reaches the maximum value of the steady state. This 
maximum value ema~ will be considered known. It can be calculated separately from steady-state 
models or empirical correlations. 

The equations that should be satisfied in this case are: 

Pi T [I~A + (si-1 - zi_ 1)A] + P~ + P~+_________~l A z i q  = m o i ,  
R7 2RT 

and 

pL 4)iZi A : mLi 

[4] 

[5] 

Pi = Pi+ 1 + PL ~igzi sin 7i. [6] 

In [4] the term (Pi +Pi+ I)/2RT is the average gas density in the riser, q~ is the liquid holdup 
(~b~ = 1 -E~). For the first step of the development to a steady state, [4]-[6] are used to calculate 
p~, zi and ~b t (or Et). In the second step, ~i equals its maximum value E,,~x and [4] is used to calculate 
the mass of the gas in this section. Note that the mass of the gas in this section is no longer constant 
since, once reaching step 2, the gas from section i flows into section i + 1. Furthermore, this 
addition of gas must also be taken into account when the section i + 1 is considered. 

Next, case (figure 4) is considered, where the liquid interface in the riser is already at its maximum 
value (z~ = s~) and now the liquid level in the downward inclined pipe reaches the bottom of the 

Pl P~I 

I . . . .  

Figure 2. Case 2--liquid in the riser reaches the top of the 
pipe. 

Pl P~I 

Figure 3. Case 3--liquid level reaches the bottom of the 
pipe. 
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pipe (x~ = 0). In this case one of  two events may occur (Taitel 1986). The system may be stable 
and a steady two-phase flow will result. Or, the system may be unstable, resulting in a blowout 
of  the liquid, being pushed by the upstream expanding gas. We will consider first the case where 
the flow is stable. This will usually occur when the volume of  the gas upstream is low or the pressure 
is high so that the gas behaves similarly to an incompressible fluid. 

As in the previous case, the development of  a steady-state two-phase flow is subdivided into two 
steps. The first step is when the gas penetrates the liquid riser, while the second step starts when 
the void fraction in the riser reaches the maximum value of  the steady state. 

The equations that are satisfied in this case are the same as [4]-[6], with the exception that z~ = s~ 
and the unknown zi is replaced by the unknown mLr 

Note that in this case, once reaching step 2, the flow in the riser is in the steady state. The gas 
and liquid that enter the bottom of the riser also exit at the top to the next i + 1 section. 

Finally, we consider case 5, which is an unstable case. This may result only when the riser is 
full of liquid (or liquid with gas) and the inclined downward upstream pipe is gas filled, namely 
xi = 0 and z~ = si. Such a situation develops from case 2 (xi > 0, zi = s~) when x~ approaches 0, or, 
from case 3 (xi = O, z~ < si) when z~ approaches s~. The stability analysis that provides the criterion 
for determining whether the flow is stable of unstable will follow later. 

The unstable situation is characterized by a spontaneous expansion of  the gas upstream and 
blowout of  most of  the liquid from section i to section i + 1. Likewise, the gas from section i 
channels through the liquid and is mixed with the gase of  the i + 1 section. After this blowout 
process the liquid in the riser falls back and again blocks the gas passage from section i to section 
i + 1. In this process, liquid and gas from section i is spontaneously being added to section i + 1. 
At the end of  this process the pressure in section i + 1 increases and that of  section i decreases. 
In order to model this process we need information on the amount of  Callback and also on the 
nature of  the re-closure of the air passage as a result of the Callback. This complex process deserves 
a separate study. In this work it is assumed that the amount of  Callback is given and the liquid 
that falls back to the bottom of the riser distributes equally between the riser and the line, namely 
X i ~ Z i . 

At the end of  this spontaneous, unsteady process the situation is as shown in figure 5 and the 
following equations should be satisfied: 

mLi = pLq~isiA (1 -- E'), [7] 

X i = Z i = 0.5 m L i  [8] 
pLA 

and 

P i  me, = ~ [(4 - x , ) A  + (s ,_,  - z ,_ ,)A], [9] 

where E' is the void fraction that exists right after the blowout process in the riser. As seen, in this 
process the liquid and the gas are re-distributed between sections i and i + 1 and the section 
becomes a "normal"  section, as in case 1. 

Stabi l i t y  analys is  

The liquid column shown in figure 4, with or without gas, can be unstable when the gas volume 
upstream is large. This kind of  instability was analyzed by Taitel (1986) for the severe slugging 

Pi Pi,,,1 

~ m  T \ ~ I ~ m  Oi ÷ I 

...... i : " 

Figure 4. Case 4--steady state in the riser. 

Pl P~I 

Figure 5. Case 5--after blowout and Callback. 
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Pl Pk.1 

/ 

Figure 6. Stability of the liquid column in the riser. 

phenomenon. The analysis, however, was confined to a single pipe and a single riser with constant 
separator pressure. 

The analysis in this case is more complex since instability in section i may be influenced by the 
conditions in other sections. In this analysis we will first consider the cases when the liquid upstream 
as well as downstream is in the "normal" condition, while the section considered (i) has just reached 
the position where both x~ = 0 and z~ = si, as shown in figure 6. 

Assume a gas bubble penetrates this column a distance y, as shown in figure 6. The net force 
(per unit area) acting on the liquid column in the riser is 

A F  = Pi  li + s i -  f i  + s i -  1 - z i -  l li+ l - x i+  I [10] 
- z i_  t + e ' y  - A x i _  l - PLgdPi sin ~ i ( s i -  y) - - P i + l  l~+ l - -  xi+l -- E'y + AXi+l 

The first term on the r.h.s, is the instantaneous gas pressure at section i. It is assumed that the 
expansion of the gas is isothermal, p~ is the equilibrium pressure (at y = 0). As a result of this 
expansion, the force provided by the gas decreases with y and increases with Axi_ ~ in proportion 
to the volume ratio as shown in [10]. e' is the void fraction in the region of the bubble penetration 
and Axe_ ~ is the movement of the z~_ t ( = xi_ ~ ) interface as a result of this spontaneous expansion. 
The second term corresponds to the back pressure provided by the liquid column. As can be seen, 
this force is proportional to si - y. As y increases this hydrostatic force decreases, which is the major 
cause for instability. The third term is the back pressure provided by the next i + 1 section. Again, 
it is assumed that this pressure varies with the ratio of the volumes, The volume of the gas at the 
i + 1 section decreases due to the addition of liquid (or liquid-gas mixture) that penetrates the gas 
volume. This additional volume is the same as the change of the volume in the is section but with 
an opposite sign. In addition, due to the increase of pressure in the i + 1 section, x~+ ~ decreases 
and its change is designated as Axj+j. 

When y = 0, Axe_ ~ and Ax~+~ are also zero, the system is under hydrostatic equilibrium, and 
AF = 0. If, as a result of the spontaneous penetration of the gas, AF increases with y, then the 
section i is unstable and a spontaneous expansion of the gas in section i and a blowout of the liquid 
from section i to the next section will occur. The condition for instability is thus ~ F / ~ y  > O. 

In order to determine the stability condition we need to express Axe_ l and Axi+L in terms of y. 
We may assume that except for section i, all other sections are in static equilibrium during this 
spontaneous expansion. This assumption enables formulating the conditions for calculating Axe_ 
and Ax~+~ as follows: 

l~_ ~ - x i _  t + s~_ 2 - z i_  2 li + s i - 1  - -  Z i -  i 

= Pi li + S i -  l - -  Z i -  1 -[- (" 'Y  A x i  i P i -  l 1~ _ l - -  x i  - 1 + s~_ 2 - z i -  2 - -  A x i _  2 + Ax~ _ ~ - _ 

+ p L g [ ( z i _  ~ + A x e _  l )  sin 7i- ~ -- (x~_ L AXe_ ~) sin fl~_ ~] [11] 

and 

l i +  1 - x i +  1 

P i +  I li + 1 ~ x i +  I - E ' y  + A x i +  i 

/ i + 2  - -  X i +  2 "JI- S i +  I - -  Z i +  | 

= P i + 2  l i+2 - -  X i + 2  "JF Si+ 1 - -  Zi+ 1 - -  A x i +  1 Jr- A x i + 2  

+ P L g [ ( z , ÷ l  + AXe+ l) sin yi+l -- (x,+l -- Ax,+t) sin fl,+l]; [12] 

[11] is an equation for Ax x_ 1 and [12] is an equation for Ax~+~ (as a function of y). Unfortunately, 
these equations cannot be solved since additional unknowns, Ax;+2 and Axt_:, are introduced in 
[l l] and [12]. In principle, however, it is not difficult to continue applying hydrostatic equilibrium 
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upstream and downstream until we reach the constant separator pressure on the "right" and the 
first section on the "left" and all Ax;s could be solved simultaneously. However, this is not very 
convenient and as an approximation we will seek further simplifications. 

First, we consider the case that the liquid in the upstream and downstream sections does not 
move, namely Axe_ ~ and AX~+l are zero. This greatly simplifies the problem since the stability 
criterion at section i becomes independent of the other sections. This assumption yields a lower 
bound for the instability. As can be observed from [10], the contributions of both Axe_ 1 and A x i +  ! 

are to decrease stability since both increase AF. This means that if section i is unstable using this 
assumption, then it is absolutely unstable and no further analysis is needed. 

The second assumption, which leads to an upper bound for stability is to assume that 
Axi_2 =Ax~_l and that Axi+~ =Axi+2. This assumption is equivalent to assuming constant 
pressure in the upstream section i + 2 and in the downstream section i - 1. Since in reality the 
upstream pressure at i + 2 increases, this assumption will yield the maximum movement of Axt+ i. 
Similarly, this assumption will yield the maximum movement of the Axe_ ~ so that the criterion 
based on this assumption will serve as the upper bound of stability. Namely, if it is stable according 
to this criterion, then it is absolutely stable. This procedure allows isolating the calculation to only 
the two adjacent sections. 

Using the aforementioned simplifying assumption, [11] and [12] are quadratic equations for 
Axe_ ~ and Axe+ l that could be solved for Axi_ t and AX~+l as a function of y. To a very good 
approximation when terms of Ax z and y (when compared to I) are neglected, the Axs can be 
approximated by 

£ '  

Axi_  I = Y =- E'Ki_ lY [13] 
1+  

Pi 
PL g(sin f l i -  i + sin Yi- I ) 

and 

E / 

Axi+ l = y - E'Ki+ jy ,  [14] 
(1,+,-  x,+,) 

1+  
P i +  1 

PLg(sin fli+t + sin ?i+l) 

which shows that both Axs are directly proportional to y. 
It is interesting to observe that two opposite effects of the gas at section i + 1 on the stability 

of the system. The first effect is a stabilizing effect which is caused by the compression of the gas 
and its resistance to a blowout. This is manifested by the negative sign that preoedes E'y in the last 
term of [10]. The second effect is a destabilizing effect caused by the movement of the liquid level 
in the i + 1 pipe (AXt+l). Note that when li+~-X~+l < p t + l / p L g ( s i n f l ~ + ,  +sinT~+l), K ~  1 and 
the two effects completely cancel each other. Likewise, the first term in [10] shows two effects, 
a stabilizing effect (E'y) and a destabilizing effect (Axi_ t). 

The stability criterion at y = 0 is obtained by differentiating [10] using [13] and [14] to yield: 

t~ AF p~E'(1 - Ki_~) p~+~E'(1 - K~+~) 
= ]- pLgC~i sin 7~-'  < 0. [15] 

3y l i + s i - i - z i _ ,  l , + l - x i + t  

As can be seen, the first and the third terms have a stabilizing effect (note that K is always less 
than unity). It results due to the decrease of the gas pressure in section i and the compression of 
the gas in section i + 1. When the pressure is very high the gas behavior is similar to an incom- 
pressible gas and the system is stable. The second term accounts for the instability caused by the 
decrease of the liquid column in this expansion process, which is the major reason for the instability. 

As discussed earlier, [15] is an upper bound for stability. Namely, if it shows that the system 
is stable, then it is absolutely stable. Equation [15] with K = 0 is the criterion for stability when 
Axe_ 1= Axi+~ = 0 which is used as the lower bound for stability. Namely, when [15] with K = 0 
is not satisfied, the system is absolutely unstable. 

We may note that usually the system is either stable or unstable by both criteria. Only seldom 
will the condition for stability be in the region of  marginal stability such that the two limiting cases 
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will predict  amb iguous  results. In  this event,  we leave it to the reader  to determine the cri terion 
to be used, depending on his preference o f  conservat ive  design. We suggest the use o f  the average 
o f  the two criteria as a reasonable  engineering approx ima t ion  for  predict ing the stability cri terion 
for  this normal ly  quite na r row region o f  ambiguous  results. 

The  above-ment ioned  der ivat ion is for  the case where the system upstream and downs t ream o f  
section i are " n o r m a l "  (case 1). I f  the ups t ream as well as the downs t ream sections are in case 2, 
the analysis is a lmost  the same and all that  is needed is to use si± ~ instead of  zt±, + Axi± ~ in [11] 
and  [12]. In  [13] and  [14] the terms with sin ? should be set equal to 0. Namely ,  K is calculated 
somewha t  differently for  sections in cases 1 and  2. 

Finally, we note  that  the above  analysis and the result o f  [15] is for  condit ions where ups t ream 
and downs t r eam condit ions cor respond  to case 1 (or case 2 when modified). When  the first section 
is considered,  Axt_ 1 is obviously  zero and so is Ki_ I. When  the last section is considered,  Axe+ ~ = 0, 
namely  K~+~= 0. This obviously greatly simplifies the calculat ions for  these sections. 

R E S U L T S  A N D  D I S C U S S I O N  

Figures  7 and 8 show two typical runs for  water  and air flowing in a 2.54 cm dia pipe. The  
superficial velocity o f  the liquid is ULS = 0.1 m/s  and that  o f  the gas under  a tmospher ic  condi t ions 
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Figure 7. Stable condition, water-air. /'/LS = 0.l m/s, Uc~o = 0.1 m/s, D = 2.54cm; I~ = 50 m, s~--50m, 

fl~ = y~ = 45°; i = 1, i = 2, i = 3, - - -  i = 4. 
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Figure 8. Unstable condition, water-air. ULS = 0.1 m/s, UGSo = 0.l m/s, D = 2.54 cm; I~ = 300 m, st = 50 m, 
fl~=6.8 ° ,y=45°;  i=1 ,  i=2 ,  i = 3 , - - - i = 4 .  
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is also Urs = 0.1 m/s. The separator pressure, P4, is equal to the atmospheric pressure, Po. The basic 
geometry consists of  three identical sections, as described in figure 1. At time t = 0 the pipes are 
half-filled with water and the pressures of all sections are atmospheric pressure. The risers lengths 
are 50 m and their inclination to the horizontal is 45 °. 

For the first run, the downcomer length is also 50 m and its inclination to the horizontal is, as 
for the risers, 45 ° . In this case the gas volume in this section is relatively small so that the system 
is stable and a steady state results as time progresses, the downcomers lengths for the second run 
are 300 m. These lengths are sufficient to cause the system to be unstable and its behavior with time 
is considerably different than for the first run. Obviously, a steady-state operation is never reached 
in this case. 

Figures 7 and 8 demonstrate clearly the difference between these two runs. Figure 7 shows the 
case for the stable system. At time zero zi = xi = 25 m and P~/Po = 1. Liquid and gas are supplied 
to section 1 only. As a result, zl, xl and pj all increase. At the same time the pressure in all the 
other sections increases, x~ decreases and z~ increases. Once zl reaches the top of the riser, the liquid 
in the pipe reverse its direction and xt decreases until it reaches the bottom of  the riser. Meanwhile, 
the liquid in sections 2 and 3 also reaches the top of  the pipe. Once x~ = 0, gas penetrates the liquid 
column and the liquid is aerated up to its maximum value which was taken here as Ema x -~-0 .8 .  A 
separate steady-state model shows that Emax varies between 0.7-0.9 (depending on the specific local 
pressure). However, since the examples shown here are just for demonstration purposes and are 
not germane to the present analysis, it was decided to use an average typical value of 0.8. As a 
result, the pressure in section 1 decreases due to the decrease of  the static head of the aerated liquid 
column. Next, the liquid in section 2 reaches the bottom of  the pipe and similarly a steady-state 
flow is developed in the second riser. Finally, the liquid in the section 3 reaches the bottom of  
the pipe and a steady-state results for all the sections and the pressure ceases to be a function of 
time. 

Figure 8 shows the results for an unstable system. The system is similar to the previous one with 
the only exception that the downcomer is six times longer. The initial process with time is similar 
to the previous case. However, when x~ reaches the bottom of the pipe a blowout occurs. The liquid 
left in this section after blowout is taken at 20% of the liquid in the riser, and both x~ and zl fall 
to a value of  5 m. The pressure Pt decreases and the pressure P2 increases as they become almost 
equal. Also, x2 drops considerably due to the increase of pressure in section 2. With time the process 
repeats itself and a second blowout occurs at time ~ 28,000 s. The third blowout triggers the second 
and the third sections to blowout too as x~ in these sections reaches the bottom of the pipe as a 
result of the blowout upstream. Consequently, the liquid of  all three sections is blown out of the 
system into the separator and xi and zi result in a low value of 5 m in all sections. The system then 
starts to fill up with liquid and gas and again blowout occurs, either at the first section only or, 
at times, the blowout in the first section causes a blowout in sections 2 and 3 (see t = 70,000 s). 
This transient process continues "forever" and fluctuation of pressure and liquid and gas quantities 
in the pipe continue with no apparent exact repetitious cycle. 

It is interesting to observe that the instability in this example started only in the first section and 
when the other sections were in the condition of case 2, namely the liquid level is at the top of 
the risers in all the sections. We also note that the determination of the stability criterion in this 
study was unambiguous since both bounds result in the same stable or unstable condition. 

S U M M A R Y  AND C O N C L U S I O N S  

The present work establishes the basis for calculating pipeline system behavior under transient 
flow conditions for the case where the liquid and gas flow rates are low so that the frictional 
pressure losses can be neglected. 

A solution is obtained in simple and closed algebraic relations form in which the time-dependent 
variables can be solved using a systematic iteration procedure. 

The present model can be used for predicting pipe system behavior for both stable and unstable 
situations under low flow rate conditions. It can also be used as a tool for checking more elaborate 
transient codes and their capabilities to handle low flow rate two-phase flow conditions. 
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